How to Read an Audiogram

You just did an audiometric test and your results are in front of you - what do you do now? In this article, you will understand how to accurately read an audiogram report. Hopefully this will help you make appropriate and effective management decisions.

It goes without saying that audiometry is one of the most powerful diagnostic tools in medicine. In order to treat hearing impairment effectively, its precise cause, nature and extent must be determined by the clinician. 

Pure tone audiometry results influence the diagnosis and type of treatment chosen for a patient significantly. In fact, decisions with respect to the choices of surgery, use of hearing aids or the need for medical treatment are based heavily on the results! This emphasizes the reason why clinicians need to understand how to read pure tone audiometry results.

Pure tone audiometry

Before we dive in, let's first gain an understanding of what you need to produce them. A clinician would generally conduct pure tone audiometry (air and bone conduction) as part of their audiological test battery. Pure tone audiometry is used to assess a hearing ability, specifically, the softest sounds that a patient can hear. These are called Thresholds. In simple terms, a threshold is the softest sound a person can hear at each frequency 50% of the time. It is important to note that pure tone audiometry results yield quantitative information about one’s hearing. Qualitative  would indicate how well speech is heard and/or understood).

During testing, the audiometer presents pure tone sounds to the patients ear. These tones are played from low to high frequencies (Hz) at different intensity levels (dB). Air conduction testing transmits pure tones to the outer ear (ear canal), which go through the middle ear and finally reach the inner ear. Hence, air conduction evaluates the whole hearing system. Bone conduction pure tones are transmitted through the skull using a bone vibrator (oscillator) which is placed on the mastoid or forehead. Bone conduction stimulates and assesses the cochlea directly and bypasses the outer and middle ear. 

The goal testing is to produce an audiogram. This is used to determine the presence, type, configuration (which frequencies are specifically affected), degree of hearing loss (the severity), and whether the hearing loss is unilateral(one side) or bilateral (both sides). 

Introduction to the Audiogram

What is an audiogram?

An audiogram is report that indicates a patients ability to hear. It is shown as a graph representing low to high frequencies or pitch (Hz) on the horizontal axis and low to high intensities or volume (dB) on the vertical axis.

audiogram chart

Intensity is measured in decibels (dB) with -10 dB being the softest sound. Each horizontal line represents the increase in loudness of sound as the dB value increases.
Note: -10 dB does not mean that there is no sound, rather, it is the softest sound that an individual with ‘normal’ hearing is able to hear 50% of the time it is heard.

Frequency is measured in Hertz (Hz). The range of conventional audiometry begins from low (125 Hz) to high (8000 Hz).
The most important frequencies for speech we hear every day are in the 250 Hz to 6000 Hz range.

Note: While the conventional audiometry range peaks at 8000 Hz,  ultra-high frequency audiometry peaks at 20000 Hz and is mostly used in early detection of ototoxic effects of treatment and early diagnosis of hearing loss.

 READ: 5 Tips To Ensure Quality Audiometry Results

Audiogram Symbols

There are various symbols used on audiometry graphs, but most clinicians refer to the widely used and recommended standard set of symbols (ASHA, 1990). These symbols are used to mark and describe information about the patient’s hearing give more detail about the test that was performed.  


Common Audiogram Symbols

audiometry symbols

Note: The term ‘masked’ above refers to additional noise that was presented in the non-test ear. This is done to prevent the non-test ear from hearing the tones presented and "helping" the test ear to hear. 
Symbols that pertain to the left ear are marked in blue and the right ear marked in red


Degree of Hearing Loss

The standard measurement for degrees of hearing loss helps us understand the effect hearing loss may have. A common standard is the World Health Organisation (WHO) standard.
By obtaining air conduction thresholds are able to determine the degree of hearing loss and better understand it's effects. 

Below is a blank audiometry graph with degrees of hearing loss represented in coloured bands based on WHO standards.

degrees of hearing loss chart

[Generated at ‘hearingaidknow’.]


Degrees of hearing loss

  • Mild Hearing  Loss (26 - 40 dB HL)
    Can hear conversation in quiet environments but will battle to hear in noisy environments. 
  • Moderate Hearing  Loss (41- 55 dB HL)
    Understands conversation in a quiet space when face to face, where the  vocabulary is constrained to a known topic. May miss up to 70% of the conversational message. 
  • Moderately-Severe Hearing  Loss (56- 70 dB HL)
    Will struggle to hear normal conversation in a quiet room and miss most of the conversation content.
  • Severe Hearing  Loss (71 - 90 dB HL)
    Can only hear communication when speech is loud. May not hear voices at all 
  • Profound Hearing  Loss (90+ dB HL)
    Will not hear conversation at, even if the speaker is shouting loud. May even perceive speech as vibrations. 

Configuration of Hearing Loss

The configuration of hearing loss is classified by the shape of the patient's air conduction thresholds plotted on the audiometry graph across the frequency spectrum. Various shapes/configurations of the patient’s hearing loss may be associated with certain aetiologies of hearing loss. For example, by nature, presbycusis or hearing loss associated with increased age, is typically sloping in shape affecting the higher frequencies first and more. 

A commonly used system for configuring hearing loss is shown below. Please note that below the word octave will be used. Octave frequencies are the frequencies seen on the horizontal axis of the audiometry graph (250, 500, 1000, 2000, 4000 and 8000 Hz).

Configuration of hearing loss.jpg


Types of Hearing Loss

We have examined different methods of presenting the tone to the ear, which are air conduction (sound energy goes through the outer, middle then to the inner ear), and bone conduction (sound energy bypasses the outer and middle ear and goes directly to the inner ear). Both air and bone conduction test results on the audiometry graph help us determine whether the problem or cause of hearing loss is in the outer, middle or inner ear.


There are three basic types of hearing loss.

  1. Conductive Hearing Loss
  2. Sensorineural Hearing Loss
  3. Mixed Hearing Loss

1. Conductive Hearing Loss

If the air conduction threshold results show a loss of hearing, but the bone conduction threshold results are within normal limits, the hearing loss is conductive. This means that there is a problem either in the outer or middle ear as the conduction of sound from the earphone is being obstructed. Examples of causes of conductive hearing loss are wax impaction in the ear canal and otitis media with effusion.

example of a conductive hearing loss

Example of conductive hearing loss audiometry results (degree: mild) [sourced from Aussie Deaf Kids]

2. Sensorineural Hearing Loss

If both air and bone conduction threshold results show the same amount of hearing loss, then the hearing loss is sensorineural. This means that the problem is in the inner ear alone. To explain further, there is no obstruction creating a ‘gap’ in the results, in the outer and middle ear. Examples of causes of sensorineural hearing loss are ototoxicity and noise induced hearing loss.

example of sensorineural hearing loss

Example of a sensorineural hearing loss audiometry results (degree: mild to moderate) [sourced from Aussie Deaf Kids]

3. Mixed Hearing Loss

If both air and bone conduction threshold results show a hearing loss, BUT the air conduction thresholds show a much worse hearing loss, then this is called a mixed hearing loss. This means that the problem is in the outer and/or middle ear (conductive), AND the inner ear (sensorineural), therefore mixed.

example of mixed hearing loss

Example of a mixed hearing loss audiometry results (degree: moderate to profound) [sourced from Aussie Deaf Kids]

In conclusion, by knowing how to read audiometry reports, a clinician is able to classify the hearing loss according to degree, configuration and type. This information is significantly useful in deciding the need for further diagnostic assessment and audiological management or to refer the patient for medical intervention.

To find out about the KUDUwave’s special features, book a demo session

Hlolo Ramatsoma

Written by Hlolo Ramatsoma

Hlolo is a clinical, research & support Audiologist at eMoyo. He is involved in many parts of the business, from consulting to R&D to supporting and training customers. He earned his BSc in Audiology from the University of Cape Town and is an experienced clinical audiologist specialized in ototoxicity monitoring, product specialist and training audiologist.

Never Miss A Thing, Sign Up Today